Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34426524

RESUMO

The atmospheric history of molecular hydrogen (H2) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H2 mol-1 air) during the mid to late 1800s. Over the twentieth century, H2 levels rose by about 70% to 550 ppb. The reconstruction shows good agreement with the H2 atmospheric history based on firn air measurements from the South Pole. The broad trends in atmospheric H2 over the twentieth century can be explained by increased methane oxidation and anthropogenic emissions. The H2 rise shows no evidence of deceleration during the last quarter of the twentieth century despite an expected reduction in automotive emissions following more stringent regulations. During the late twentieth century, atmospheric CO levels decreased due to a reduction in automotive emissions. It is surprising that atmospheric H2 did not respond similarly as automotive exhaust is thought to be the dominant source of anthropogenic H2. The monotonic late twentieth century rise in H2 levels is consistent with late twentieth-century flask air measurements from high southern latitudes. An additional unknown source of H2 is needed to explain twentieth-century trends in atmospheric H2 and to resolve the discrepancy between bottom-up and top-down estimates of the anthropogenic source term. The firn air-based atmospheric history of H2 provides a baseline from which to assess human impact on the H2 cycle over the last 150 y and validate models that will be used to project future trends in atmospheric composition as H2 becomes a more common energy source.


Assuntos
Efeitos Antropogênicos , Atmosfera , Monitoramento Ambiental/métodos , Hidrogênio/análise , Regiões Antárticas , Humanos , Modelos Teóricos , Emissões de Veículos
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495345

RESUMO

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b ([Formula: see text]), which is newly discovered in the atmosphere, and updated results for HCFC-133a ([Formula: see text]) and HCFC-31 ([Formula: see text]ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y-1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016-2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y-1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y-1 Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

3.
Science ; 316(5832): 1732-5, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17588927

RESUMO

Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of -1.5 petagrams of carbon per year (Pg C year(-1)) and weaker tropical emission of +0.1 Pg C year(-1) compared with previous consensus estimates of -2.4 and +1.8 Pg C year(-1), respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...